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a b s t r a c t

Chemical composition of seeds changes during grape ripening and this affects the sensory properties of
wine. In order to control the features of wines, the condition of seeds is becoming an important factor for
deciding the moment of harvesting by winemakers. Sensory analysis is not easy to carry out and
chemical analysis needs lengthy procedures, reagents, and it is destructive and time-consuming. In the
present work, near infrared hyperspectral imaging has been used to determine flavanols in seeds of red
(cv. Tempranillo) and white (cv. Zalema) grapes (Vitis vinifera L.). As reference measurements, the flavanol
content was estimated using the p-dimethylaminocinnamaldehyde (DMACA) method. Not only total
flavanol content was evaluated but also the quantity of flavanols that would be extracted into the wine
during winemaking. A like-wine model solution was used for this purpose. Calibrations were performed
by partial least squares regression and they provide coefficients of determination R2¼0.73 for total
flavanol content and R2¼0.85 for predicting flavanols extracted with model solution. Values up to
R2¼0.88 were reached when cultivars were considered individually.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Grape seeds constitute a small part of the berry, but they affect
extensively the sensory properties of wine. Their phenolic com-
pounds are responsible of these properties and they change in a
qualitative and quantitative manner during ripening [1,2]. The
most representative of them in grape seeds, flavanols, include
flavan-3-ol monomers (catechin, epicatechin and epicatechin
gallate) and procyanidins, which are polymers comprised of
flavan-3-ol terminal and extension subunits [3]. Phenolic compo-
sition of grapes depends on multiple factors, including climate,
variety, soil, and degree of ripeness, being this phenolic maturity
decisive for the production of quality red wines. Although seeds
represent only 0–6% of berry weight, they are an important source
of flavanols for wines. Another aspect that has raised interest is the
extractability of these compounds. It has been reported that
extractability depends on the ripeness of grape seeds. This
phenomenon is due to changes in the interactions between
tannins and cell wall material [4]. Insufficiently ripened grapes
have higher tannin extractability [5].

The determination of flavanols might help on the decision of
the harvest date. However, the ‘optimal’ harvest date should be

defined based on several measurements. Since changes during
ripening affect both gustatory and appearance properties, sensor-
ial analysis is the most common approach to evaluate the condi-
tion of the seeds by vine growers, though it is difficult to be carried
out in an accurate and objective manner [6]. Some studies have
found clear evidences relating chemical composition and sensorial
parameters in vine products. In particular, flavanols are respon-
sible of these properties in grape seeds [7,8]. Nevertheless, these
methods frequently are destructive, time-consuming, and entail
the use of reagents [9–12]. Replacing conventional analyses, near
infrared (NIR) spectroscopy provides fast, accurate and non-
destructive way to obtain chemical composition [13,14]. These
techniques have been successfully joined to computer vision
systems [15,16]. NIR radiation has very little energy and penetrates
a millimetre or so into the substance depending on the substance's
surface composition and structure. Anyhow, phenolic compounds
are mainly concentrated within the outer layer of grape seeds [17].

Near-infrared (NIR) hyperspectral imaging is a powerful tech-
nique which has been used in several applications in agricultural
products [18–22]. In fact, it has been applied to grape seeds for
establishing the methodology for acquiring images, discriminating
varieties and estimating the date of sampling, but not yet for
predicting chemical composition [23]. Hyperspectral imaging
provides a digital image and the spectrum belonging to each pixel.
Hyperspectral images (HSI), or hypercubes, are three-dimensional
data matrix where the first two axes of the matrix represent the
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spatial coordinates, while the third axis portrays the spectral
dimension. They usually are represented as a battery of images
where each layer shows the reflectance at a wavelength in grey
scale [24]. Due to the great amount of information that they include,
HSI require the application of multivariate data analysis for data
exploration. As with NIR spectroscopy, chemometric techniques are
applied to decompose the image dataset, process and perform
regression or classification analyses. The possibilities of hyperspec-
tral imaging based on the NIR range have been illustrated develop-
ing a model able to predict and classify barley kernels [25,26],
predicting hardness in maize kernels [27], and studying enzymes
activity and detecting sprout damage in wheat [28,29].

In order to minimise contributions from imaging instrument
responses that are not related to variations in the composition of
the imaged sample, preprocessing of spectral data is often of vital
importance if reasonable results are to be obtained from the
spectral analysis step. The most frequently used methods for
spectral correction are multiplicative scatter correction (MSC),
standard normal variate (SNV) and derivation [30–33]. However,
there is still no standard procedure to decide which spectral
processing produce best results. Partial least squares regression
(PLSR) is a procedure used to relate a large number of independent
variables (predictors) to one (PLSR1) or few (PLRS2) response
variables (observations) when a reduced number of cases are
available. Since it reduces a great number of redundant informa-
tion, it is very effective in spectral analysis [34,35].

The aim of this work was to evaluate the potential of NIR
hyperspectral imaging for the evaluation of flavanols in seeds from
red and white grapes during ripening. Hyperspectral imaging was
chosen as the best option for evaluating reflectance spectrum in
grape seeds because of their heterogeneity and reduced size.
Measurements by bulk NIR spectroradiometry need an amount
of sample that covers the whole spot of measurement. In this case,
the seeds contain interstitial spaces that produce shadows affect-
ing the spectrum intensity. Imaging techniques allow measuring a
maximum area of sample without the influence of shadows.

2. Material and methods

2.1. Sampling

The grapes (Vitis vinifera L.) sampled are included under the
“Condado de Huelva” Designation of Origin, in Southwestern Spain,
harvested in 2012. One red variety (cv. Tempranillo) and one
autochthonous white variety (cv. Zalema) were used. The number
of samples was 18 for Zalema and 15 for Tempranillo, depending on
the availability and harvesting times of each variety. They were
taken twice a week from early July until postharvest mid-
September. Sampling process was carried out at daybreak by taking
a pair of berries from alternate grapevines, from four rows of vines,
and from both sides of each row up to reach 2 kg of berries. In this
process, the berries were taken with pedicel intact to slow down
the berry oxidation as long as possible. Once in laboratory, one
hundred berries were randomly taken and seeds removed, left to
dry at room temperature for 2 h, and frozen at �20 1C until
acquisition of hyperspectral images and chemical analysis. Each
sample was divided into three parts used as replicates ((18þ15)�
3¼99 samples). Two of these replicates were allocated to the
calibration set and the other sample to the prediction set.

2.2. Hyperspectral image analysis

The system comprised a Xenicss XEVA-USB InGaAs camera
(320�256 pixels; Xenics Infrared Solutions, Inc., Leuven, Belgium),
a spectrograph (Specim ImSpector N17E Enhanced; Spectral Imaging

Ltd., Oulu, Finland) covering the spectral range between 884 and
1717 nm (spectral resolution of 3.25 nm), two 70W tungsten iodine
halogen lamps (Priluxs, Barcelona, Spain) used as light source, a
mirror scanner (Spectral Imaging Ltd., Oulu, Finland), and a compu-
ter system. HSI were recorded using a 50 Hz frame rate and an
exposure time of 9 ms using the instrument acquisition software
SpectralDAQ 3.62 (Spectral Imaging Ltd., Oulu, Finland). From the
acquired HSI, it was observed that the first and the last twenty bands
of the image had a high level of noise, thus not being useful for
spectral data extraction. Therefore, images were cropped to the
spectral range of 950–1650 nm with a total of 215 bands.

A ‘white reference’ image (W, 100% reflectance) was acquired
from a white Spectralons ceramic tile (Labsphere Inc., North Sutton,
USA), and a ‘dark reference’ image (B, 0% reflectance) was obtained
with the light source off and the mirror scanner completely covered
with its opaque cap. The white and dark ‘reference’ HSI were used to
correct the raw images (R0) in order to obtain a relative reflectance
image (R) according to the following equation:

R¼ R0�B
W�B

ð1Þ

For segmentation of HSI, a method based on forward stepwise
discriminant analysis was applied with the software Statistica 8.0 [36].
Image processing, spectral processing and statistical treatment were
carried out using MATLAB R2012b [37]. A flowchart of the image
processing and spectral treatment used in this study is schematized
in Fig. 1.

2.3. Chemical analysis

Each sample was split into two fractions subjected to different
extractions. For the exhaustive extraction, grape seeds were
freeze-dried and ground to obtain a homogeneous powder for
extraction. One gram of seed powder was extracted with 10 mL of
methanol:water (75:25), sonicated (15 min) and centrifuged
(15 min), repeating the extraction process twice more. The metha-
nolic extracts were combined and finally made up to 50 mL with
methanol. For the extraction in wine-like medium, two grams of
intact grape seeds were macerated in 50 mL of model wine
solution (4 g L�1 tartaric acid, 12.5% ethanol, adjusted at pH
3.6 with NaOH 0.5 M) during 72 h [38].

Flavanols spectrophotometric analysis of both extractions was
carried out following a modification of Vivas et al. [39]. Ten or
twenty microlitres of total extraction or wine like medium extracts
were mixed with 190 or 180 μL of methanol respetively and 1 mL
of DMACA reagent. The DMACA reagent was prepared immedi-
ately before use, containing 0.1% (w/v) DMACA (4-dimethylami-
nocinnamaldehyde) in a mixture of HCl:methanol (1:10, v/v). The
analyses were performed in triplicate on an Agilent 8453 UV–
visible spectrophotometer (Palo Alto, USA), equipped with diode
array detection (DAD), measuring absorbance at 640 nm and using
a calibration curve of (þ)-catechin (Sigma-Aldrich, St. Louis, USA)
for quantification. The aforesaid extract volumes were appropri-
ately modified when the concentration was outside the linear
range of the calibration curve. All results were expressed as mg of
catechin equivalents per gram of grape seed.

3. Results and discussion

3.1. Segmentation by discriminant analysis

A set of reflectance spectra belonging to seeds and background
was collected as input data set. The forward stepwise discriminant
analysis included sequentially three wavelengths, 1216, 1392, and
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1147 nm for discriminating the region of interest from the back-
ground. Fig. 2 shows the average spectra belonging to seeds and
background (a homogeneous surface composed of polyethylene)

and highlights the selected bands. The algorithm of segmentation
saved all the masks of segmentation and they were visually
supervised for ensuring the suitability of the proposed method.

3.2. Exploratory analysis of spectra

Fig. 3 shows the mean and standard deviation spectra regard-
ing the variety of grape seeds. It also shows the spectra after
applying the transformations Log(1/R), SNV treatment, and second
derivative, treatments that yielded the best results in prediction
analyses. It can be seen that seeds from white and red grapes have
different reflectance intensities along some wavelength regions,
although with the same pattern.

Before the quantitative analysis, principal component analysis
(PCA) was used as unsupervised pattern recognition technique in
order to get information about the latent structure of the spectral
matrix. This method provided not only information related to
spectral outliers and the distribution of samples in the newly-
created space but also was an important source of knowledge with
which to evaluate the suitability of prediction set used in PLSR. For
detecting possible outliers, Hotelling's T2 statistic was used as a
measure of the multivariate distance of each sample from the
centre of the data set [40]. Regarding the spectral features of each
sample, this test rejected 4 of the 99 samples considering a
confidence level of 95%. Using the spectral data of the remaining
samples (without outliers), PCA was applied again in order to
ensure the representativeness of the prediction set in the gener-
ated multivariate space.

PC1, PC2, and PC3 explained 98.61%, 1.18%, and 0.10% of the total
variance respectively. PC1 was influenced by the time in an
extensively manner. Fig. 4a shows PC1 and its evolution over time.
At every date, spectra from Tempranillo seeds had higher scores
than Zalema ones. Moreover, this dependency seemed stronger for
Tempranillo, being its slope higher. Fig. 4b shows the scatterplot of
scores for PC2 and PC3. Generally, Tempranillo seeds presented
positive scores for PC2 while Zalema seeds presented negative
ones. Furthermore, it can be observed that samples belonging to
prediction set were uniformly distributed among calibration set
samples. These results are in agreement with results previously
reported [23].

3.3. Quantitative analysis

Flavanols content decreased during the grape ripening regard-
less the variety and type of extraction. The methanol extract
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Fig. 1. Flow chart of the image processing and spectral treatment used in this study.

1000 1100 1200 1300 1400 1500 1600
Wavelength (nm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Seeds
Background

mn
7411

mn
6121

mn
2931

R
el

at
iv

e 
re

fle
ct

an
ce

Fig. 2. Spectra of seeds and background highlighting the bands included by the
forward stepwise discriminant analysis.
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flavanols ranged from 4.28 to 34.26 mg g�1 of grape seed. The
flavanols from the extracts obtained using like-wine solution
ranged from 0.12 to 7.21 mg g�1 of grape seed. Table 1 shows a
brief resume of the aforementioned results. It must be highlighted
that high standard deviations were due to the evolution during
ripeness instead of errors of measurements. Although it was not
the goal of this work, extractability of each sample was evaluated
as the fraction of flavanols extracted by the model solution with
respect to the exhaustive extraction. The extractability also
decreased during ripening, being about 25% at the first stages
and about 5% in the last ones.

Results of chemical analyses were used as dependent (Y)
variables and the matrix of processed spectra was used as the
independent (X) variables in the PLSR. The statistical parameters of
the final calibration equations are shown in Table 2. For extrac-
tions with methanol and considering all samples as a unique data
set, R2 was 0.73 for calibration and 0.75 for prediction. The RMSEC
and RMSEP were 4.01 and 3.86 mg g�1 of grape seed respectively.
Results for predicting flavanols extracted by like-wine solution had
R2¼0.82 for calibration and R2¼0.85 for prediction. In this case,
RMSEC and RMSEP were 0.92 and 0.88 mg g�1 of grape seed
respectively. Since cultivar was a determining factor in the

preliminary exploratory analysis, the PLSR were repeated for each
variety individually. Because of this, results in Tables 1 and 2 are
also broken down into varieties. As it was expected, coefficients of
determination increased while RMSEC and RMSEP decreased.

Fig. 5 shows the loadings resulting of the PLSR model for total
flavanols and it indicates the most dominant wavelengths. The
spectral region between 1100 and 1300 nm showed important
contribution to the model loadings and is mainly related to the
combination band of O–H symmetric and anti-symmetric stretch-
ing vibration, the combination band of C–H aromatic second

1100 1200 1300 1400 1500 1600 1000 1100 1200 1300 1400 1500 1600

ollinarpmeTamelaZ

1000

-0.012

-0.008

-0.004

0.000

0.004

0.008

0.012evitavired
dn2

+
V

N
S

+)
R/1(

goL

0.0

0.2

0.4

0.6

0.8

1.0
ollinarpmeTamelaZ

1100 1200 1300 1400 1500 1600 1000 1100 1200 1300 1400 1500 16001000

R
el

at
iv

e 
re

fle
ct

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

-0.012

-0.008

-0.004

0.000

0.004

0.008

0.012

evitavired
dn2

+
V

N
S

+)
R/1(

goL

Wavelength (nm)Wavelength (nm)

Wavelength (nm) Wavelength (nm)
R

el
at

iv
e 

re
fle

ct
an

ce

Fig. 3. Average reflectance spectra and average processed spectra of each variety. Shaded areas represent the standard deviation at each wavelength.
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Table 1
Summary of chemical analyses for all samples and regarding the variety (all results
were expressed as mg of catechin equivalents per gram of grape seed).

N Extraction Mean Minimum Maximum Std. dev.

All samples 95 Model wine 2.26 0.12 7.21 2.22
Total 15.82 4.28 34.26 7.74

Zalema 50 Model wine 2.54 0.38 6.48 2.40
Total 15.85 5.63 28.05 6.93

Tempranillo 45 Model wine 1.95 0.12 7.21 1.98
Total 15.78 4.28 34.26 8.63

F.J. Rodríguez-Pulido et al. / Talanta 122 (2014) 145–150148



overtone, and C–H third overtone vibration. These can be attrib-
uted to the chemical structure of phenolic compounds [41,42]. The
first O–H stretching overtone contributes to spectrum at 1400 nm,
hence the moisture affects expansively to this band. In this case,
the influence can be attributed to the loss of water that grape
seeds suffer at the same time that flavanols develop [43]. Accord-
ing to Goodchild et al. [44], bands close to 1600 nm are attributed
to condensed tannins.

4. Conclusions

The PLSR models were successfully performed to evaluate
flavanols in grape seeds. These were able to predict the concen-
tration of flavanols of a sample based on spectral features as the
predictor variables with a coefficient of determination of R2 of 0.75
for total extractions and 0.85 for extractions with model wine
solution. Furthermore, this coefficient reached up to 0.88 when
varieties were considered individually. On the other hand, PCAwas
suitable for grape seeds characterization regarding the variety,
proving the suitability of the methodology previously established.

It is well known that in the case of agricultural products the
range of the variability should be as large as that expected in any
future samples. In this work, seeds from different cultivars have
been collected during ripening; therefore this variability should be
enough to develop models in a feasibility study. Nonetheless, a
comprehensive study must be made in order to evaluate other
factors such as different production areas, vintages and varieties,
for the complete development of these models. Though it is not
yet a substitute for conventional chemical analysis, it arises as an
attractive alternative due to its simplicity and quickness. By
establishing the variables that affects each cultivar, this could
become a reference method to assess the chemical characteristics

of grape seeds during maturation, being very useful for vine
growers and wineries.
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